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Abstract—Modeling biological systems is of high interest in
molecular communications. Exact analytical models of biological
environments, e.g. cells or blood vessels offer several advantages
in analysis and design of molecular communication channels. For
the diffusion of particles in cells or their transport through
a chain of cells functional transformations are a promising
modeling approach. This contribution considers the modeling
of particle diffusion in a sphere with impedance boundary
conditions, serving e.g. as a simple model for diffusion in cells
bounded by a semi-permeable membrane.

I. PROBLEM DESCRIPTION

The design and analysis of biological channels for the
transmission of information by particles is of high interest
in molecular communications (MC). At the moment only
a few testbeds are available (e.g. [1]) and their design is
very complex. Biological experiments mostly are slow and
the accuracy of experiments is restricted. Helpful tools for
the design of experiments and therefore for MC channels
are simulation models of biological systems. Therewith the
impulse response of a channel can be derived, before a complex
experiment or measurement has to be set up. Beside numerical
methods or Monte-Carlo simulations also an analytical model
can be derived by the application of functional transformations
to an initial-boundary value problem [2], [3].

In this contribution an initial-boundary value problem for
the particle diffusion in a sphere is considered. The sphere
is bounded by a membrane with an adjustable permeability.
A simulation model follows by the application of functional
transformations and the boundary conditions are incorporated
by a feedback loop. The derived model serves as a simple
cell model for the modeling of inter/intra-cell and cell-to-
environment communication. It can be extended in further
works to: Traveling calcium waves through a cell cascade (see
[4]); Cells pumping protons into a substrate according to the
presented testbed in [1].

In this abstract, the exact calculations are only roughly
outlined. The simulation results show the coherence of the
derived analytical model.

II. PHYSICAL DESCRIPTION

The diffusion of particles in a spherical volume V = {x :
[r, θ, ϕ]

∣∣0 ≤ r ≤ R,−π ≤ ϕ ≤ π, 0 ≤ θ ≤ π} is described
by a set of partial differential equations for the particle

concentration p(x, t) in mol m−3 and flux i(x, t) = [ir iθ iϕ]
T

in mol m−2 s−1

i(x, t) +
1

D
· grad p(x, t) = 0, (1)

∂

∂t
p(x, t) + div i(x, t) = fe(x, t). (2)

The function fe is an excitation function containing all
source signals. A constant diffusion coefficient D specifies
the propagation of particles within the sphere.

The boundary of the sphere at r = R is semi-permeable,
which leads to boundary conditions of the third kind

ir(x, t) = γ · p(x, t), r = R. (3)

The real-valued parameter γ controls the rate at which particles
can leave the sphere. At time t = 0 there are no particles in
the sphere, so that p(x, 0) = 0.

For the derivation of a simulation model the PDE’s (1), (2)
are reformulated in a unifying vector form according to [3][

∂

∂t
C −L

]
y(x, t) = 0, L = A +∇I, (4)

with the spatial differential operator L and the matrices

A =

[
0 −I
0 0

]
, C =

[
0 0
1 0

]
, ∇ =

[
−grad 0

0 −div

]
. (5)

The vector of variables y contains all physical quantities

y(x, t) =
[
p(x, t) i(x, t)T

]T
. (6)

III. FUNCTIONAL TRANSFORMATIONS

The solution y of the initial-boundary value problem in (4)
is expanded into a set of bi-orthogonal eigenfunctions [2], [3]
and is formulated in terms of a state-space description. The
boundary conditions in (3) are realized by a feedback loop.
The eigenvalues sµ of the system are derived for boundary
conditions with γ = 0, then they are shifted by a feedback
matrix to fulfill the boundary conditions with γ > 0 [5].

A. Eigenfunctions and Eigenvalues

The eigenfunctions for the concentration p are derived by the
solution of an eigenvalue problem dedicated to (4) as described
in [3] and follow as

Kp(x, µ) = jn(kn,ν · r) · Y mn (θ, ϕ). (7)

The function jn denotes the spherical Bessel function of order
n and kn,ν are the real-valued zeros of j′n(kn,ν ·R) = 0. The



function Y mn is the spherical harmonic function of order n
and degree m. The three indexes n = 0 . . . N , ν = 0 . . .M ,
m = −n . . . n are combined into the index µ = [n, ν,m]
numbering the eigenfunctions K(x, µ) and eigenvalues sµ.

The eigenvalues sµ of the system with boundary conditions
for γ = 0 are derived within the solution of the eigenvalue
problem for Kp. All eigenvalues indexed by µ can be arranged
into a state matrix A with the sµ-values on its main diagonal

sµ = −Dk2n,ν , → A = diag (. . . , sµ, . . . ) . (8)

The influence of the boundary conditions for γ > 0 on the
eigenvalues is concentrated into a feedback matrix acting on
the matrix A [5]

Ac = A− γ ·BK. (9)

The amount of the variable permeability γ from (3) determines
the eigenvalues of the matrix Ac.

IV. SIMULATION MODEL

By the application of the transformation steps described in
[3], [5] the solution of the vector PDE in (4) is formulated in
terms of a state-space description in the discrete time domain.
The multidimensional state equation follows as

ȳ[k] = e(A−γ·BK)T ȳ[k − 1] + f̄e[k], (10)

with T as the discrete sampling time and t = kT . The vector ȳ
is the vector of system states in the transform domain and f̄ is
the transform domain representation of the excitation functions.
The output equation for the concentration p(x, t) in the sphere
is given by
p[x, k] = cT(x)ȳ[k], cT(x) = [. . . ,Kp(x, µ), . . . ] . (11)

V. SIMULATION

The simulations show the validity of the derived simulation
model. The geometry of the sphere is described by the
normalized radius R = 1. The normalized diffusion coefficient
is D = 1 · 10−2. The excitation signal fe(x, t) is a sequence
of two particle injections at t = 0.25s, 3s. The injections are
modeled by a spatial raised cosine function in the center r0 = 0
of the sphere. As the source is located in the center, only modes
of order n = 0 are excited, and therefore N = 0, M = 30 is
used for simulation. The simulations are performed with the
model in (10) and are compared with the results of the particle
based AcCoRD simulator [6].

The simulation results for the normalized concentration
p(x, t) are shown in Fig. 1 for different observation positions
and permeability γ. The upper plot in Fig. 1 shows the particle
concentration near the boundary at r1 = 0.9 ·R. For a value
of γ = 0 the boundary of the sphere is completely reflective
as can be seen in the black curve. Choosing γ > 0 the sphere
boundary becomes permeable so that all particles can leak
for t → ∞ (blue, red curves). The plot in the bottom of
Fig. 1 shows the same scenario for a different observation
point r1 = 0.4 · R. The same effects can be observed, but,
conclusively, they are not as pronounced as on the boundary.

Both simulations show, that the derived model (10), (11)
perfectly agrees with the results of the particle simulator. While
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Fig. 1. Normalized concentration p(x, t) at x = [r1, π/3, π/4], with r1 = 0.9
(top) and r1 = 0.4 (bottom) over time for different values of γ = 0, 1 ·
10−2, 1 · 10−1, simulated with the simulation model (10), (11) (black, blue,
red) and with a particle simulator [6].

the AcCoRD simulator needed approx. 15min to simulate one
scenario, the proposed model needed 15s, respectively 0.2s
for the pure time iterations. Furthermore, the model preserves
the closed form of the solution and allows a system theoretic
analysis of the process and the influence of the permeability.
It is also able to handle e.g. time- and space dependent
permeability at the boundary.

VI. CONCLUSIONS
This abstract outlined the derivation of an analytical model

for particle diffusion in a sphere with a semi-permeable
boundary. The incorporation of the boundary conditions by a
feedback loop makes the permeability γ an adjustable parameter
in the discrete time simulation algorithm.

The derived model serves as a starting point for further works:
intra- and inter cell communication, propagation of calcium
waves trough a cell-cascade, transmitter/receiver design.

Special thanks to Wayan Wicke (Institute for Digital Communications,
University of Erlangen-Nuremberg) for creating the particle based simulations.

REFERENCES

[1] L. Grebenstein et al., “Biological optical-to-chemical signal conversion
interface: A small-scale modulator for molecular communications,” IEEE
Transactions on NanoBioscience, vol. 18, no. 1, pp. 31–42, Jan 2019.

[2] H. Zwart, “Transfer functions for infinite-dimensional systems,” Systems
& Control Letters, vol. 52, no. 3, pp. 247 – 255, 2004. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S016769110400009X
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